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Abstract

We explore whether international equity returns, equity portfolio flows, and exchange rate returns

are consistent with the hypothesis that (unhedged) global investors rebalance their portfolio in order

to limit their exchange rate exposure upon (1) relative equity return and (2) exchange rate shocks.

We also explore whether (3) equity flow shocks influence the exchange rates and relative equity prices.

In the estimation of the VAR system we do not impose any causal ordering upon the primitive shocks,

but instead identify the system based on theoretical priors about the contemporaneous conditional

correlations between the three variables. International data for the five largest equity markets are

consistent with a theory in which equity returns and portfolio rebalancing are an important source of

exchange rate dynamics.

1



Appendix
Assume the vector yt = (ER,FL, FX)0 has an AR representation

A(L) (yt − φ) = ηt,

with A(L) = 1 +A1L+A2L
2 + ...AqL

q, and 3× 3 matrices A1, A2, ...Aq. Furthermore, E(ηtη
0
t) = Σ.

Let the Wold MA representation be given by

yt = φ+A(L)−1ηt = φ+B(L)ηt

We first estimate the coefficients bB(L) and the matrix bΣ. One possible decomposition of the matrixbΣ = PP 0 is the Choleski decomposition where P is a lower triangle matrix. For orthogonal innovations,

et ∼ (0, I) with et = P−1ηt, we have E(ηtη0t) = E(Pete
0
tP

0) = E(PP 0) = Σ, and C(L) = B(L)P is

one possible MA representation of yt.

yt − φ = B(L)ηt = B(L)PP−1ηt = B(L)P et = C(L)et

Generally, we want to search over the set of all matrices eP = PR which form a valid MA representation

with PR(PR)0 = bΣ. This search is carried out through a combination of Jacobi rotations. We can
define three distinct Jacobi rotations matrices (for −π/2 < θi < π/2) as

Rθ1 =


cos(θ1) − sin(θ1) 0

sin(θ1) cos(θ1) 0

0 0 1



Rθ2 =


cos(θ2) 0 − sin(θ2)
0 1 0

sin(θ2) 0 cos(θ2)



Rθ3 =


1 0 0

0 cos(θ3) − sin(θ3)
0 sin(θ3) cos(θ3)


Any joint rotation R = Rθ1Rθ2Rθ3 fulfills RR

0 = I. Hence, PR also represents a decomposition of bΣ0
into primitive shock and C(L) = B(L)PR the corresponding MA representation of yt.

These different MA representations imply different impulse response functions and different cor-

relation structures between the variables of yt. Let s be a vector picking the impulse response to a

particular primitive shock et (for example s1 = (1, 0, 0) for e1t). The correlation of variable yit and

yjt conditional on a shock of type s follows as

ρij|s(R) =
(Ci(L)s)(Cj(L)s)p
(Ci(L)s)2(Cj(L)s)2
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where Ci(L) denotes the row i of C(L). Given the definition of the vector yt, correlations conditional

on return shocks have s1 = (1, 0, 0), those conditional on flow shocks have s2 = (0, 1, 0), and those

conditional on exchange rate shocks have s3 = (0, 0, 1).

Economic theory provides prior information about k = 1, 2, ..6 conditional correlations ρk. In

particular it allows us to restrict the sign of ρk. We can therefore define a penalty function f(.)

which assigns a positive weight to MA representations in violation of theoretical sign restrictions

and a negative weight if they are fulfilled. We concentrate here on a linear penalty function which

gives a penalty of f(k,R) = −ρij|s(R) whenever a positive correlation is predicted and a penalty of
f(k,R) = ρij|s(R) if a negative correlation is predicted. We then define m3 grid points (with m = 90)

for rotation angles (θ1, θ2, θ3) ∈ [−π/2, π/2]3 and find the rotation R∗ on the grid which minimizes

the overall penalty. Formally,

R∗ = argmin
{R}

6X
k=1

f(k,R).

We then report the impulse response for the MA representation given by C(L) = B(L)PR∗.
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Figure 1: Shown are the monthly foreign equity excess returns (foreign market index return minus
U.S. index return), the standardized U.S. equity outflows into the foreign country and the exchange
rate returns (dollar appreciation is a positive return) for 5 countries, namely France, Germany, Japan,
Switzerland and the U.K. The data period is January 1990 to September 2003.
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Figure 2: Shown are cumulative impulse response functions over 10 months of a foreign equity excess
return shock on equity excess returns (column 1), U.S. equity outflows into the foreign country (column
2), and the exchange rate return (column 3) for the 5 sample countries (by row). Confidence intervals
of 2 standard deviations are added.
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Figure 3: Shown are cumulative impulse response functions over 10 months of an equity outflow shock
on foreign equity excess returns (column 1), U.S. equity outflows into the foreign country (column 2),
and the exchange rate return (column 3) for the 5 sample countries (by row). Confidence intervals of
2 standard deviations are added.
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Figure 4: Shown are cumulative impulse response functions over 10 months of a FX return shock on
foreign equity excess returns (column 1), U.S. equity outflows into the foreign country (column 2), and
the exchange rate return itself (column 3) for the 5 sample countries (by row). Confidence intervals
of 2 standard deviations are added.
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